从物联网设备管理数据是实时分析过程的重要方面。为确保您的数据管理解决方案可以处理IoT数据需求,请查找以下五个关键功能:
1.多功能的连接性和处理各种数据的能力:物联网系统具有多种标准,并且物联网数据遵循多种协议(MQTT,OPC等)。此外,大多数物联网数据以半结构化或非结构化格式存在。因此,您的数据管理系统必须能够连接到所有这些系统并遵守各种协议,以便您可从这些
系统中提取数据。解决方案同时支持结构化和非结构化数据同样重要。
2.边缘处理和扩展:良好的数据管理解决方案能够在将其吸收到数据湖之前,过滤掉来自IoT系统的错误记录(例如负温度读数)。它还应该能够使用元数据(例如时间戳或静态文本)来丰富数据,以支持更好的分析。
3.大数据处理和机器学习:由于IoT数据量非常大,因此执行实时分析需要能够在亚秒级的延迟内运行扩充和提取,以便可以实时使用数据。此外,许多客户希望实时操作ML模型(例如异常检测),以便他们可以在太晚之前采取预防措施。
4.解决数据漂移:由于固件升级等事件,来自物联网系统的数据可能会随时间变化。这称为数据漂移或模式漂移。重要的是,您的数据管理解决方案可以自动解决数据漂移,而不会中断数据管理过程。
5.实时监控和警报:物联网数据的获取和处理从未停止。因此,您的数据管理解决方案应提供带有流程可视化的实时监控,以随时显示有关性能和吞吐量的流程状态。数据管理解决方案还应提供警报,以防在此过程中出现任何问题。